
1 Execution Service for Distributed Processors

Takako M. Hickey, Caltech

1.1 Technical Steps that went into arriving at the func-
tional prototype

1. Downloaded Objective Caml compiler [4].

2. Downloaded Ensemble group communication software [2].

3. Developed the first version of the service in Caml over Ensemble.

4. Installed it on Linux Beowulf cluster nagegling.cacr.caltech.edu [1].

5. Tested it with a small set of ORCA jobs.

6. Found that the first version was unstable over 32 processors.

7. Redesigned and coded the second version.

8. Installed the second version on naegling. It appears stable with 64 pro-
cessors.

1.2 Reasons for taking the technical steps described in
Previous Section

The ultimate goal of the project is to develop a tool that aids high energy
physicists in effectively using computational resources distributed worldwide.
There are a number of tools available today that are aimed toward similar goals
(LSF, PBS, DQS, Condor etc.), but none quite adequate. The first step in
the project was to take a look at a few technical issues that are important to
high energy physics experiments that have not been addressed by existing tools.
These are:

1. keeping track of large number of long running jobs

2. supporting collaboration among multiple physicists

3. conserving limited network bandwidth

4. maintaining high availability

5. tolerating partition failures that are common in wide-area networks

Our execution service addresses issues a and b by introducing the notion of
sessions. A session serves as a container for multiple jobs that are related. Jobs
that are in the same session can be examined or killed with a single command.
A session can be shared by multiple physicists, and safe access to it are ensured
by our service.

1



Compared to the amount of data high energy physics experiments produce,
today’s network is slow. Our execution service addresses this problem by allow-
ing processors to be selected based not only on load or type but also on where
data resides.

High availability of service is addressed by having multiple copies of servers.
Servers share some state so that resources will not be over-allocated or under-
utilized. The shared state is replicated at each server and its consistency is
maintained. It turns out that in the environment where network partitions can
occur availability and consistency are at odds with each other.

Implementation of our execution service utilizes two existing technologies:
functional language ML and group communication toolkit. ML is strongly typed
and does garbage collection. These two features makes programs written in ML
much less prone to bugs compared to those written in more popular languages
such as C/C++ and Java. Group communication aims to facilitate programmers
in writing distributed programs. Two important concepts are group member-
ship and ordered communication. Group membership keeps track of members
that are reasonably communicable. Ordered communication provides delivery
of messages within each group that guarantees specified properties. An exam-
ple is totally ordered communication, which delivers the same set of messages
during each view (an instantiation of membership) in the same order. These
properties are useful in maintaining replicated state consistent. Both ML and
group communication are founded on rigorous theory. They are still active area
of research in computer science community and tools we selected are at the
cutting edge of technology that computer science has to offer.

While group communication facilitates in writing fault-tolerant distributed
programs, it is not a panacea. One of the problems is its inadequacy in dealing
with partition failures. When a new member joins a group the default action
group communication performs is to transfer the group state to the newly joined
member. The problem with this method is that the newly joined member may
not be a newly started member but an old member that has partitioned away.
This is possible because in distributed environment one cannot distinguish a
process that is faulty from a process that is simply slow, and removing mem-
bers that are too slow from a group is sometimes necessary in order to make
progress. When a partitioned member rejoins the group and receives the group
state, the old state that was held by the partioned member will be overwriteen.
In a practical term, this could mean a loss of an access to an active compu-
tation. Our execution service gets around this problem by merging state on
membership changes rather than relying on the simple state transfer. For more
detail description for the design of our execution service, see [3].

Another problem with group communication is that because of its semanti-
cally rich operation, it does not scale to large number of members. While we
knew of the existence of this problem, we run into the problem much earlier
than we expected. Our initial remedy was to restrict the use of group communi-
cation to a small set of servers while connecting most of other members through
cheaper form of communication.

2



1.3 Future Plan

The priority is placed on minimum features required for a system usable for
CMS applications. Features nice to have but not necessary are placed under the
time permitting section. Items are grouped in three month blocks that may be
interchanged based on processor availability and people’s schedules.

Dec 2000 (or when more processors become available; with Vladmir Livtin)

• More testing: larger number of processors, more complicated ORCA
scenarios.

Mar 2000

• Support for multiple users. Run server as root and run jobs under
real user id.

• Security.

• Queuing when resources are not available.

Jun 2001 (with Koen Holtman and Asad Samar)

• Integration with data replication service.

• Hook to Globus.

Sep 2001 (with Iosif Legrand)

• Study of data aware scheduling algorithms using Monarc simulator.

• Integration with SONN agent.

Dec 2001

• Hirerachical servers for scalability.

• Performance monitoring: collect statistics on how long it takes to
copy certain data etc. to better estimate scheduling.

March 2002

• Larger scale tests involving joint scheduling, and load balancing among
the the interactive and production services at FNAL, CERN and
Tier2 sites.

• Tests of joint scheduling at multiple CMS sites and shared-resource
sites (e.g. NPACI sites in the US) for CPU-intensive.

June 2002

• Prepare multisite scheduling and load balancing tests for the Software
and Computing Technical Design Report (TDR).

December 2002

3



• Large scale tests among existing Tier1 and Tier2 prototypes in the
US and other CMS sites, in preparation for the Physics TDR in 2003.

Time permitting

• Multiple level queues.

• Better user interface following examples of more developed cluster
computing systems such as PBS and DQS.

• More detailed study of scalability of current design, perhaps using
the network simulator ns [5].

References

[1] CACR. Intel pentium pro beowulf cluster naegling.
http://www.cacr.caltech.edu/resources/naegling.

[2] The Ensemble project. The Ensemble distributed communication system.
http://www.cs.cornell.edu/Info/Projects/Ensemble/index.html.

[3] Takako M. Hickey and Robbert van Renesse. An execution service for a
partitionable low bandwidth network. In Proceedings of the Twenty-Ninth
International Symposium on Fault-Tolerant Computing, Madison, Wiscon-
sin, USA, June 1999.

[4] Xavier Leroy. The Objective Caml ssystem. http://pauillac.inria.fr/ocaml/.

[5] NS project. The network simulator: ns-2. http://www.isi.edu/nsnam.ns.

4


